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Until the Bitter End:  
On Prospect Theory in a Dynamic Context †

By Sebastian Ebert and Philipp Strack *

We provide a result on prospect theory decision makers who are 
naïve about the time inconsistency induced by probability weight-
ing. If a market offers a sufficiently rich set of investment strategies, 
investors postpone their trading decisions indefinitely due to a strong 
preference for skewness. We conclude that probability weighting in 
combination with naïveté leads to unrealistic predictions for a wide 
range of dynamic setups. (JEL D81, G02, G11)

Cumulative prospect theory (Tversky and Kahneman 1992) is arguably the most 
prominent alternative to expected utility theory (Bernoulli 1738; von Neumann 
and Morgenstern 1944). Expected utility theory (EUT) is well studied in static and 
dynamic settings, ranging from game theory over investment problems to institu-
tional economics. In contrast, cumulative prospect theory (CPT) with probabil-
ity weighting—the assumption that individuals overweight unlikely and extreme 
events—has mostly focused on the static case. This paper studies the dynamic 
investment and gambling behavior of CPT agents who are naïve, i.e., unaware of 
being time inconsistent.

Our main result shows that naïve CPT agents never stop gambling when the set 
of gambling or investment opportunities is not too restrictive. This never-stopping 
result applies to highly unfavorable gambles and investments with arbitrarily large 
expected losses per time. It follows from a static result on skewness preference under 
CPT that we label skewness preference in the small: a CPT agent always wants to 
take a simple, small, lottery-like risk, even if it has negative expectation. At any point 
in time the naïve CPT investor reasons: “If I lose just a little bit more, I will stop. And 
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if I gain, I will continue.” This simple strategy results in a right-skewed gambling 
experience that is attractive due to skewness preference in the small. Once a loss 
has occurred, however, a new skewed gambling strategy comes to the naïve CPT 
investor’s mind, and—as long as such a strategy is feasible—he continues gambling.

No “malicious” third party is responsible for manipulating the CPT investor into 
this behavior. Never stopping arises naturally in numerous prominent economic 
and financial decision situations, thereby yielding predictions that are arguably too 
extreme. In a casino gambling model in the spirit of Barberis (2012), the naïve CPT 
gambler may gamble until the bitter end, i.e., until bankruptcy. We also study the 
irreversible investment problem of Dixit and Pindyck (1994), and prove that naïve 
CPT agents never exercise American options even when it is profitable to exercise 
them immediately. Finally, our results imply that CPT cannot predict the disposition 
effect of Shefrin and Statman (1985) for naïve investors.

The results in this paper hold for a wide range of CPT specifications and are 
independent of the investor’s reference point, which determines which outcomes 
are viewed as gains and losses. Our crucial assumption on CPT is that probability 
weighting is strong enough relative to loss aversion (the trait that losses feel worse 
than comparable gains feel good). This assumption, which ensures that individuals 
like skewness enough to bare the risk of potential losses, is fulfilled by all commonly 
employed CPT parametrizations that also received extensive empirical support.

We define CPT preferences precisely in Section I. In Section II, we present our 
static result that CPT implies skewness preference in the small. Section III presents 
the never-stopping result. Section IV discusses the implications for CPT models 
of casino gambling, real-option investment behavior, and the disposition effect. In 
Section V, we discuss options to evade the never-stopping result through relaxing 
our three main assumptions: probability weighting stronger than loss aversion, 
naïveté, and the availability of small and skewed gambles. Section VI summarizes 
our results. All proofs are in the Appendix. Several additional results and illustra-
tions are collected in online Appendix W.

I.  Prospect Theory with More Probability Weighting than Loss Aversion

We study CPT preferences over real-valued random variables ​X.​ In CPT, outcomes 
are evaluated by a value function (also called utility function) relative to a reference 
point that separates all outcomes into gains and losses. A weighting function distorts 
cumulative probabilities, as suggested by Quiggin (1982), rather than the proba-
bilities of individual outcomes as in the original prospect theory of Kahneman and 
Tversky (1979). The idea of a reference point first appears in Markowitz’s (1952) 
seminal paper. Common choices for the reference point are the status quo of current 
wealth or expected wealth.

For simplicity, first consider a binary risk ​L(  p, b, a)​ that yields outcome ​b​ with 
probability ​p  ∈  (0, 1),​ and ​a  <  b​ otherwise. A prospect theory agent evaluates 
binary risks relative to the reference point ​r  ∈  ℝ​ as

(1) ​CPT(L(  p, b, a)) = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩
​
(1 − ​w​​ +​(p))U(a) + ​w​​ +​(p)U(b) , 

​ 
if r  ≤  a

​     ​w​​ −​(1 − p)U(a) + ​w​​ +​(p)U(b),​  if a  <  r  ≤  b​      
​w​​ −​(1 − p)U(a) + (1 − ​w​​ −​(1 − p))U(b),

​ 
if b  <  r

  ​​​
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with nondecreasing weighting functions ​​w​​ −​, ​w​​ +​ : [0, 1]  →  [0, 1]​ with ​​w​​ +​(0) 
=  ​w​​ −​(0)  =  0​ and ​​w​​ +​(1)  =  ​w​​ −​(1)  =  1,​ and a continuous, strictly increasing 
value function ​U : ℝ  →  ℝ​ with ​U(r)  =  0​ that satisfy Assumptions 1 and 2 stated 
below. The CPT utility of general random variables ​X​ with possibly continuous out-
comes can be defined as1

(2)	 ​CPT(X)  =  ​∫ 
​ℝ​+​​

​ ​​ ​w​​ +​(ℙ(U(X)  >  y))  dy − ​∫ 
​ℝ​−​​

​ ​​ ​w​​ −​(ℙ(U(X)  <  y))  dy, ​

but to understand the results of this paper it is sufficient to have formula (1) in mind. 
The following assumption on the value function means that any kinks it may have 
are not too extreme, which excludes infinite loss aversion.

Assumption 1 (Value Function): The value function ​U​ has finite left and 
right derivatives, ​​∂​ −​​U(x)​ and ​​∂​ +​​U(x),​ at every wealth level ​x​. Further, ​λ 
=  ​sup​ x∈ℝ​    ​ ​ ​∂​ −​​U(x) _____ ​∂​ +​​U(x) ​  <  ∞​ exists.

In the well-studied case where ​U​ is S-shaped (i.e., convex over losses, concave 

over gains) and smooth everywhere except at the reference point, ​λ  =  ​ ​∂​ −​​U(r) _____ ​∂​ +​​U(r) ​​ mea-

sures loss aversion: see Köbberling and Wakker (2005).2 Note that Assumption 1 
does not impose any restriction on ​r​ and thus the choice of the reference point is 
immaterial to our results. Moreover, many functional forms other than S-shape sat-
isfy Assumption 1.

The final important feature of CPT is probability weighting, which is the driving 
force of this paper’s results.3 The assumptions we impose on the probability weight-
ing functions are satisfied by the commonly used (inverse-S-shaped, i.e., first con-
cave and then convex) probability weighting functions of Tversky and Kahneman 
(1992), Goldstein and Einhorn (1987), Prelec (1998), and the neo-additive weight-
ing function (Wakker 2010, p. 208), for all parameter values.

Assumption 2 (Weighting Functions): There exists at least one ​p  ∈  (0, 1)​ such 
that

	 (i )	 ​​w​​ +​(p)  >  ​  λp
 _______ 

1 − p + λp
 ​​  and

	 (ii )	 ​​w​​ −​(1 − p)  <  ​  1 − p
 _______ 

1 − p + λp
 ​ .​

1 This expression indeed nests formula (1) for binary lotteries as well as the well-known definition of Tversky 
and Kahneman (1992) for general discrete prospects (cf. Kothiyal, Spinu, and Wakker 2011). 

2 S-shaped utility with exponential curvature as in de Giorgi and Hens (2006) satisfies Assumption 1. For a tech-
nical reason, S-shaped utility of the power form as in Kahneman and Tversky (1979) does not satisfy Assumption 
1. We treat this important case explicitly in online Appendix W2 and obtain similar results. 

3 Some researchers (in particular in finance) also refer to “prospect theory” when an EUT investor has a loss-
averse, S-shaped utility function. Therefore, we emphasize that our paper is on prospect theory with probability 
weighting. 
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In Appendix W1, we show that a sufficient condition for Assumption 2 is4

(3)	 ​​min​ 
 
​ 
 
  ​{​w​​ +​′(0), ​w​​ −​′(1)}  >  λ .​

This condition says that extremely unlikely gains are overweighted and extremely 
likely losses are underweighted, both by more than the loss aversion parameter. 
Therefore, we refer to Assumption 2 as probability weighting stronger than loss 
aversion. Appendix W1 provides a deeper examination of Assumption 2 and exam-
ples for when it may be violated.

II.  Skewness Preference in the Small

This paper starts out with a static result on prospect theory preferences over small, 
skewed risks. We say that a risk is attractive if the CPT utility of current wealth plus 
the risk is strictly higher than the CPT utility of current wealth.

Theorem 1 (Prospect Theory’s Skewness Preference in the Small): Under 
Assumptions 1 and 2, for every wealth level there exists an attractive zero-mean 
binary lottery that is arbitrarily small.

The proof in Appendix A explicitly constructs such a lottery. This binary lottery 
assigns the probability ​p​ that exists according to Assumption 2 to the larger out-
come. Assumption 2 guarantees that this outcome is overweighted enough to over-
come the individual’s loss aversion. Since for inverse-S-shaped weighting functions 
this ​p​ is small, the larger outcome occurs with small probability, which is character-
istic for a binary lottery being right-skewed (Ebert 2015). Thus Theorem 1 presents 
a rigorous result on CPT and skewness preference. Numerous articles find support 
for skewness preference (e.g., Kraus and Litzenberger 1976 for asset returns, Golec 
and Tamarkin 1998 for horse-race bets, and Ebert and Wiesen 2011 in a laboratory 
experiment). In many situations, prospect theory may do a good job in explaining 
behavior because it implies skewness preference.

By continuity of CPT preferences we obtain the following corollary.

Corollary 1 (Unfair Attractive Gambles): Under Assumptions 1 and 2, for 
every wealth level there exists an attractive, arbitrarily small binary lottery with 
negative mean.

Recall that risk aversion is defined as every fair risk being unattractive. Skewness 
preference in the small thus implies that, at every wealth level, a CPT agent is not 
risk averse, because he does find fair risks attractive when they are sufficiently small 
and skewed.5

4 We thank an anonymous referee for suggesting this very intuitive sufficient condition. 
5 For early results on risk aversion under a special case of CPT, see Chew, Karni, and Safra (1987) and 

Chateauneuf and Cohen (1994). Schmidt and Zank (2008) characterize strong risk aversion (aversion to mean 
preserving spreads) in CPT while we provide sufficient conditions for weak risk aversion (aversion to zero-mean 
risks) and skewness preference. 
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A. Complex, Tiny, and Very Skewed?

One may question the economic relevance of skewness preference in the small: 
are the potentially unfair risks that CPT agents find attractive unnatural in the sense 
that they are complex, extremely small, and extremely skewed?

First, note that the attractive risks we point out are simple binary risks. Gambling 
is not due to the construction of obscure St. Petersburg risks or the like.

Second, while we show that attractive risks may be small, they do not have to 
be small. In general, the maximal size of an attractive gamble depends on further 
assumptions on the value function that we do not make in this paper. In Appendix W2, 
we first show that results similar to those presented in this section also apply to the 
special case of a power-S-shaped value function even though it does not satisfy 
Assumption 1. Moreover, for this important value function and the reference point 
equal to current wealth, we can show that there are not only arbitrarily small, but 
also arbitrarily large attractive risks. This result on skewness preference in the large 
follows from a recent result due to Azevedo and Gottlieb (2012) when applied to 
skewness preference in the small.

Third, as regards the concern that attractive risks must be extremely skewed with 
a tiny gain probability, as condition (3) suggests, a closer examination of the weaker 
Assumption 2 in Appendix W1 shows that this is not the case. There, we show 
that the right-hand sides of the conditions in Assumption 2 are weighting functions 
themselves, which we call the benchmark weighting functions. A comparison of the 
actual weighting functions with the benchmark weighting functions clarifies how 
skewed risks must be in order to be attractive. As an example, for the weighting 
function estimated in Tversky and Kahneman (1992) and a loss aversion parameter 
of ​λ  =  2.25​, the gain probability ​p​ may be as large as ​7.2 percent.​

III.  On Prospect Theory in a Dynamic Context

In this section, we investigate the consequences of skewness preference in the 
small in a dynamic context. Consider a stochastic process that could reflect the accu-
mulated returns of an investment project or the price development of an asset traded 
in the stock market. This process could likewise model an agent’s wealth when 
gambling in a casino. Formally, we consider a Markov diffusion ​X  =  ​(​X​ t​​)​t∈​ℝ​+​​​​​ that 
satisfies

 	 ​d​X​ t​​  =  μ(​X​ t​​)  dt + σ(​X​ t​​) d​W​ t​​​ ,

where ​​(​W​ t​​)​t∈​ℝ​+​​​​​ is a Brownian motion and the drift ​μ : ℝ  →  ℝ​ and the volatil-
ity ​σ : ℝ  →  (0,  ∞)​ are Lipschitz continuous. This definition covers the most 
frequently studied processes in economics and finance, arithmetic, and geometric 
Brownian motion.

Investment or gambling strategies are modeled as uniformly integrable stopping 
times, which are plans when to sell an asset or when to stop gambling. Stopping 
times must be based only on past observations, i.e., all ​τ​ are adapted to the natural 
filtration ​​(​​ t​​)​t∈​ℝ​+​​​​​ of the process ​X.​ The prospect theory utility of a strategy ​τ​ given 
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the information ​​​ t​​​ at time ​t​ is given by ​CPT(​X​ τ​​, ​​ t​​),​ the CPT utility of the risk ​​X​ τ​​​ 
that is generated by the strategy ​τ .​

The probability weighting of prospect theory induces a time inconsistency (e.g., 
Machina 1989). Therefore, an initially optimal investment strategy ​τ​ may later on 
be dismissed for another strategy. A naïve investor is time inconsistent and also 
unaware of this time inconsistency. Therefore, he does not anticipate that later on 
he might deviate from his initial investment plan. At every point in time, the naïve 
CPT agent looks for a gambling or investment strategy ​τ​ that brings him higher 
CPT utility than stopping immediately. If such a strategy exists, he holds on to the 
investment—irrespective of his earlier plan. In the following, we always consider 
such a naïve agent.

Formally, the naïve agent stops at time ​t​ if and only if his prospect theory util-
ity ​CPT(​X​ τ​​, ​​ t​​)​ of any stopping strategy ​τ​ is less than or equal to ​CPT(​X​ t​​, ​​ t​​)  
=  U(​X​ t​​),​ which is what he gets from stopping immediately:

	 ​U(​X​ t​​)  ≥  ​sup​ 
τ≥t

​    ​ CPT(​X​ τ​​ , ​​ t​​).​

The following theorem characterizes the gambling or investment behavior of a naïve 
CPT agent in continuous time, infinite horizon environments. In Section IV we 
study its implications for three selected dynamic decision problems. In Section V 
we explain why the result typically also applies in discrete and finite time. The 
agent’s reference point remains arbitrary and may change over time.6 The result 
applies to the stochastic processes above, even when the drift is negative. Moreover, 
the result is global in the sense that it applies at any time ​t,​ for every current wealth ​​
X​ t​​,​ irrespective of the gambling or investment history.

Theorem 2 (Main Result): Under Assumptions 1 and 2, the naïve CPT agent 
never stops.

The idea of the proof is to construct a gambling strategy that results in a 
right-skewed binary risk which the agent prefers to stopping immediately, due to 
Theorem 1. We show that a simple two-threshold strategy, where the agent stops 
when the process falls a little bit, and continues until it has risen significantly, 
meets these requirements. Whenever the process reaches either threshold, a new 
two-threshold strategy comes to the naïve investor’s mind that makes him hold on 
to his investment.

6 To avoid confusion: the dynamic results in this paper also assume a “classical” prospect theory reference point. 
However, this reference point may change over time and evolve according to any ​​​ t​​​  -adapted stochastic reference 
point process ​​(​r​ t​​)​t∈​ℝ​+​​​​​ as long as the reference point is viewed as constant by the agent when the stopping decision 
has to be made. As such, the reference point may depend on the past investment evolution and past behavior, but 
not on future behavior as is the case for the stochastic, expectations-based reference points considered by Kőszegi 
and Rabin (2006, 2007). 
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A. Comparison with Expected Utility

It is insightful to contrast the prediction made by Theorem 2 with EUT. Is prob-
ability weighting really needed to generate never stopping? While there exists no 
process the naïve prospect theory agent will ever stop, a risk-averse expected utility 
maximizer stops all fair and unfair processes immediately. We now show that never 
stopping is not even obtained under EUT when assuming an extreme degree of 
risk-lovingness. In particular, we consider an EUT agent whose utility function ​u​ is 
of exponential growth at least at some wealth level ​​x ̂ ​,​ i.e., ​u​ is not more convex at ​​x ̂ ​​ 
than all possible exponential functions.7

Proposition 1: An EUT maximizer with continuous and strictly increasing util-
ity stops all Brownian motions with sufficiently negative drift and small variance at 
every wealth level where his utility function is of exponential growth.

Therefore, while for a naïve CPT agent never stopping occurs as a consequence 
of natural and commonly made assumptions on the CPT value and weighting 
functions, in EUT never stopping does not even emerge under most extreme and 
unnatural assumptions on the utility function. Never stopping will be the result of a 
time-dependent utility model when utility is gain-seeking at a reference point that 
always equals current wealth. But this assumption of predictably changing pref-
erences seems even more unrealistic as it predicts infinite risk-lovingness for all 
small risks always (rather than respecting loss aversion and distinguishing between 
right-skewed and left-skewed risks as does CPT).

IV.  Applications

A. Casino Gambling

Our first example is the continuous, infinite time horizon analogue to the discrete, 
finite time casino gambling model of Barberis (2012). Barberis studies the behavior 
of prospect theory agents who gamble 50–50 bets in a casino for up to five peri-
ods. Because no analytical solution is available, the author investigates planned and 
actual behavior by computing the CPT utilities of all possible gambling strategies 
that can be generated by a five-period, 50–50 binomial tree, for more than ​8,000​ 
parameter combinations of the CPT parametrization of Tversky and Kahneman 
(1992). The reference point is constant and assumed to equal initial wealth when 
entering the casino. An advantage of this approach is that it also yields results on the 
behavior of sophisticated agents with and without commitment. For naïveté, in this 
setting, the simulation results show that gamblers typically plan to follow a stop-loss 
strategy when entering the casino, but end up playing a gain-exit strategy (i.e., con-
tinue gambling when losing and stop gambling when winning). We now first give 

7 Every power and exponential utility function (concave or convex) is of exponential growth everywhere. If ​u​ is 
infinitely risk-loving at ​x,​ i.e., kinked and gain-seeking (​​∂​ +​​u(x)  >  ​∂​ −​​u(x)​), then the function ​u​ is not of exponen-
tial growth at ​x .​ However, almost everywhere this cannot be the case. Since ​u​ is monotonic it is differentiable almost 
everywhere and thus without risk-loving kinks at almost all wealth levels. 



www.manaraa.com

1625Ebert and Strack: On Prospect Theory in a Dynamic ContextVOL. 105 NO. 4

the analytical solution to the continuous, infinite time analogue of the casino gam-
bling model (which applies to our general version of CPT). We will compare with 
Barberis (2012) in Section V when we discuss finite and discrete time.

Let ​X​ be an arithmetic Brownian motion with negative drift ​μ(x)  =  μ  <  0​ and 
constant volatility ​σ(x)  =  σ  >  0,​ i.e.,

	 ​d ​X​ t​​  =  μdt + σd​W​ t​​ .​

Due to the negative drift the agent loses money in expectation if he does not stop. 
Further assume that the process absorbs at zero because then the agent goes bank-
rupt. From Theorem 2 it follows that the naïve agent gambles until the bitter end, 
i.e., he will continue gambling until forced to stop due to bankruptcy. From standard 
results in probability theory we know that this will happen almost surely.

B. Exercising an American Option

Let ​X​ be a geometric Brownian motion with drift ​μ  <  0​ and variance ​σ  >  0,​ 
i.e.,

	 ​d ​X​ t​​  =  ​X​ t​​(μd t + σd ​W​ t​​) .​

The agent holds an American option that pays ​​X​ t​​ − K​ if exercised at time ​t​. Here ​
K  ∈  ​ℝ​+​​​ represents the costs of investment. The American option could be inter-
preted as an investment opportunity, i.e., a real option (compare Dixit and Pindyck 
1994). The agent is allowed to exercise his option at every point in time ​t  ≥  0.​ If 
the agent does not exercise the option, he receives a payoff of zero.

From Theorem 2 it follows that the agent will never exercise his option and hence 
the naïve prospect theory agent gets a payoff of zero even though he could get a 
strictly positive payoff by exercising the option immediately whenever ​​X​ 0​​  >  K.​

C. Prospect Theory Predicts No Disposition Effect for Naïve Investors

The disposition effect (Shefrin and Statman 1985) refers to the empirical obser-
vation that individual investors are more inclined to sell stocks that have gained in 
value rather than stocks that have declined in value. Several papers have investigated 
whether prospect theory can explain the disposition effect. However, all of them 
seem to have done so without the consideration of probability weighting. Barberis 
(2012) notes that the binomial tree in his paper, which models a casino, may like-
wise represent the evolution of a stock price over time. Then, naïve investors may 
exhibit a disposition effect, even though they plan to do the opposite of the dis-
position effect. Our result can be related to stock trading in the same spirit, but 
implies that naïve CPT agents never sell. In contrast, Henderson (2012) shows that 
a prospect theory model similar to ours, but without probability distortion, makes 
reasonable predictions for trading behavior and can explain the disposition effect.
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V.  Discussion

Continuous time price processes such as geometric Brownian motion fit partic-
ularly well for financial market models. However, never stopping will be the pre-
diction for a wide range of investment and gambling situations in continuous or 
discrete, finite or infinite time. A global result like Theorem 2 requires that at any 
time—and no matter how wealth has changed by that time—at least one gambling 
or investment strategy is available that results in an attractive (skewed) gamble. This 
insight requires some elaboration.

Consider again casino gambling over 50–50 bets for up to five periods. In that 
case, there is no skewness in the first place: the basic one-shot gamble is 50–50. 
The agent only gambles because he can generate a skewed payoff distribution by 
means of a stop-loss strategy. However, this generation of skewness takes time and 
is thus only feasible in the beginning. Therefore, the combination of symmetric  
one-shot gambles and finite (very short) time horizon ensures that the “casino dries 
out of skewness.” At some exogenous point in time, the casino does not offer skewed 
gambling experiences any more, and thus the agent stops gambling.

With this in mind it is immediate that, typically, we also have never stopping for 
a finite time space. To this means, the casino (or the financial market) must offer 
an attractive (sufficiently small and skewed) gamble in a single period, i.e., in the 
final period. The commonly made assumption of complete markets (which says that 
securities with any payoff structure are available) yields our extreme prediction of 
never stopping for any time horizon.

In Appendix W3, we illustrate this point through a numerical example. There 
we assume the original finite, discrete time setting introduced by Barberis (2012), 
and only change the probability of an up-movement in the binomial tree from ​1/2​ 
to ​1/37.​ In the casino paradigm, this corresponds to the assumption that a casino 
offers bets on a single number in French Roulette. We show that an agent with 
CPT preferences, as estimated in Tversky and Kahneman (1992), never stops gam-
bling for any finite or infinite time horizon. Another example in Appendix W3 pres-
ents a discrete-time, infinite horizon model with only symmetric one-shot gambles 
available. This model features never stopping because skewness can be generated 
through a sequence of bets with different stake sizes. An environment where our 
never-stopping result would not readily apply is one where bets are rather symmetric 
and large. This may be the case with indivisible and expensive investments, illiq-
uid investments whose prices jump discontinuously, or high-stake casino gambles. 
For example, Barberis’ (2012) result seems reasonable if one is playing blackjack, 
where the winning probability is close to 50 percent and the hands are $​10,000.​ 
Whether a particular real-life environment offers sufficiently small and skewed 
gambles is ultimately an empirical question.

To evade the never-stopping result, one could also dispense with one of the 
other two main assumptions of this paper. First, one may abstract from probability 
weighting as many papers do. Prospect theory without the probability weighting 
component (thus focusing on the impact of a loss-averse, S-shaped utility func-
tion) is indeed extensively applied, and successful in explaining various empirical 
phenomena such as individual trading behavior (Henderson 2012) or life insurance 
decisions (Gottlieb 2013).
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Second, naïveté may be questioned as a suitable concept to deal with time incon-
sistency. Machina (1989) provides a discussion of time inconsistency in generalized 
EUT models that received renewed attention through the casino model of Barberis 
(2012). Xu and Zhou (2013), for example, study the investment behavior of a CPT 
agent who can commit to her initial plan.

Finally, a pure prospect theory model may be regarded as a straw man, as it is 
bound to produce strange results when it moves to the realm of small probabilities, 
even in a static setting.8 While the ideas of prospect theory help us understand many 
behavioral phenomena much better, their formalization may have potential for 
improvement.

VI.  Conclusion

This paper derives results on prospect theory when probability weighting is 
strong enough relative to loss aversion. We first prove that probability weighting 
implies skewness preference in the small. At any wealth level, a CPT agent wants 
to take a sufficiently right-skewed binary risk that is arbitrarily small, even if it has 
negative expectation.

Skewness preference in the small has consequences for CPT in a dynamic con-
text. We investigate the predictions of prospect theory for a naïve agent who is 
unaware of his time inconsistency. When small and skewed gambling experiences 
are possible, naïve CPT agents never stop gambling. The implications of this result 
are extreme, as we illustrate along the lines of casino gambling, option exercise, and 
stock trading.

As the time inconsistency of CPT arises naturally as a consequence of probability 
weighting, the question of how this time inconsistency should be dealt with needs to 
be addressed. This paper analyzed the predictions of a dynamic version of prospect 
theory and their sensitivity to probability weighting and the richness of the invest-
ment opportunity set. We hope that this advances our understanding of some of the 
mechanisms at work in models that take prospect theory to the dynamic context.

Appendix: Proofs

A. Proof of Theorem 1

Let ​x​ be the agent’s wealth. We split the proof into three cases ​x  >  r​ , ​x  <  r​ , and ​
x  =  r.​ We prove that for all ​x  ∈  ℝ​ and every ​ϵ  >  0​ there exists a binary lottery ​
L = L( p, b, a)​ with mean ​x​ and ​a,  b ∈ (x − ϵ, x + ϵ)​ such that ​CPT(L) > CPT(x).​ 
The arbitrarily small zero-mean risk mentioned in the statement is thus given by ​
L − x .​ Note that ​L​ having mean ​x​ yields ​a < x < b​ and

	 ​x  =  (1 − p)a + pb  ⇔  p  =  ​ x − a _____ 
b − a ​ .​

8 We thank an anonymous referee for this perspective. 
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Proof of case 1 ​(x  >  r):​
Choose ​a  >  r​ such that both ​a​ and ​b​ are gains. Then lottery ​L​ gives the agent a 

utility of ​CPT(L)  =  ​w​​ +​(p)U(b) + (1 − ​w​​ +​(p))U(a) .​ Therefore, the agent prefers ​
L​ over ​x​ if there exist ​a  <  x​ and ​b  >  x​ such that

(A1)  ​0  <  ​(1 − ​w​​ +​​(​ x − a _____ 
b − a ​)​)​ U(a) + ​w​​ +​​(​ x − a _____ 

b − a ​)​ U(b) − U(x)

	 =  (U(b) − U(a))​(​w​​ +​​(​ x − a _____ 
b − a ​)​ − ​ U(x) − U(a)  __________  

U(b) − U(a) ​)​ 

	 =  ​​ p​(U(b) − U(a))​ 
 
 


​​ 

>0

​ 
 
  ​ ​

⎛
 ⎜ 

⎝
​ ​w​​ +​(p) _____ p  ​ − ​ 

​ U(x) − U(a)  _________ x − a  ​
  __________  

​ U(b) − U(a)  _________ 
b − a  ​

 ​
⎞
 ⎟ 

⎠
​ ​.

Consider sequences ​​(​a​ n​​, ​b​ n​​)​n∈핅​​​ with ​​a​ n​​  =  x − ​ p _ n ​​ and ​​b​ n​​  =  x + ​ 1 − p
 ____ n  ​ .​ Note that by 

construction

	 ​​ U(​b​ n​​) − U(​a​ n​​)  ___________ ​b​ n​​ − ​a​ n​​
  ​  =  ​ U(​b​ n​​) − U(x)  __________ ​b​ n​​ − x  ​ ​ 

​b​ n​​ − x
 ______ ​b​ n​​ − ​a​ n​​
 ​ + ​ U(x) − U(​a​ n​​)  __________ x − ​a​ n​​  ​ ​ x − ​a​ n​​ ______ ​b​ n​​ − ​a​ n​​

 ​

	 =  ​ U(​b​ n​​) − U(x)  __________ ​b​ n​​ − x  ​(1 − p) + ​ U(x) − U(​a​ n​​)  __________ x − ​a​ n​​  ​p ​.

Therefore, according to inequality (A1), the agent prefers lottery ​L( p, ​b​ n​​, ​a​ n​​)​ over ​x​ 
if

	 ​0  <  ​ 
​w​​ +​​( p)​
 _____ p  ​ − ​ 

​ U(x) − U(​a​ n​​)  __________ x − ​a​ n​​  ​
   ____________________________    

​ U(​b​ n​​) − U(x)  __________ ​b​ n​​ − x  ​(1 − p) + ​ U(x) − U(​a​ n​​)  __________ x − ​a​ n​​  ​p
 ​ .​

Note that

  ​​ lim​ 
n→∞​ 

 
  ​​​ ​ 

​ U(x) − U(​a​ n​​) ________ x − ​a​ n​​  ​
   _________________________    

​ U(​b​ n​​) − U(x) ________ ​b​ n​​ − x  ​(1 − p) + ​ U(x) − U(​a​ n​​) ________ x − ​a​ n​​  ​p
 ​  = ​  ​∂​ −​​U(x)  ___________________   ​∂​ +​​U(x)(1 − p) + ​∂​ −​​U(x)p ​​

	 = ​​ 
​ ​∂​ −​​U(x) _____ ​∂​ +​​U(x) ​ ____________  

1 − p + ​ ​∂​ −​​U(x) _____ ​∂​ +​​U(x) ​ p
 ​​ ≤ ​​  λ _________  

1 − p + pλ ​​ .
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Therefore, for ​n​ sufficiently large the agent finds lottery ​L(p, ​b​ n​​, ​a​ n​​)​ attractive if

(A2)	 ​0  <  ​ 
​w​​ +​​( p)​
 _____ p  ​ − ​  λ _________  

1 − p + pλ ​  ⇔  ​w​​ +​( p)  >  ​  λp
 _________  

1 − p + pλ ​, ​

and condition 1 of Assumption 2 ensures that there exists at least one such ​p.​ ∎

Proof of case 2 ​(x  <  r):​ 
Choose ​b < r​ such that both ​a​ and ​b​ are losses. In that case, lottery ​L = L( p, b, a)​ 

secures the agent a prospect theory utility of

	 ​CPT(L)  =  (1 − ​w​​ −​(1 − p))U(b) + ​w​​ −​(1 − p)U(a)​

with ​1 − p  =  ​ b − x ____ 
b − a ​ .​ Therefore, the agent continues gambling if there exist ​a  <  x​ 

and ​b  >  x​ such that

(A3)  ​0  <  ​(1 − ​w​​ −​​(​ b − x _____ 
b − a ​)​)​ U(b) + ​w​​ −​​(​ b − x _____ 

b − a ​)​ U(a) − U(x)

	 =  U(b) − U(a) + U(a) − U(x) − ​w​​ −​​(​ b − x _____ 
b − a ​)​ ​(U(b) − U(a))​ 

	 =  ​(U(b) − U(a))​ ​(1 − ​w​​ −​​(​ b − x _____ 
b − a ​)​ + ​ U(a) − U(x)  __________  

U(b) − U(a) ​)​ 

	 =  ​​ p​(U(b) − U(a))​ 
 
 


​​ 

>0

​ 
 
  ​ ​

(
​ 1 − ​w​​ −​(1 − p)  ____________ p  ​ − ​ ​ 

U(x) − U(a) ________ x − a  ​
 ________ 

​ U(b) − U(a) ________ 
b − a  ​

 ​
)

​​ 

which is the analogue to inequality (A1). The proof continues similarly to that of 
case 1. ∎

Proof of case 3 ​(x  =  r):​ 
When ​x  =  r,​ ​a​ is a loss and ​b​ is a gain. Therefore,

	 ​CPT(L)  =  ​w​​ −​(1 − p)U(a) + ​w​​ +​(p)U(b) .​

Note that, since ​x  =  r​, by definition ​U(x)  =  U(r)  =  0.​ Therefore, the agent 
chooses ​L​ over ​x​ if there exist ​a  <  x​ and ​b >  x​ such that
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(A4)  ​0  <  ​w​​ −​(1 − p)U(a) + ​w​​ +​( p)U(b) − U(x)

 	  =  ​w​​ +​( p)​(U(b) − U(a))​ + ​(U(a) − U(x))​ ​(​w​​ −​(1 − p) + ​w​​ +​( p))​ 

 	  =  ​(U(b) − U(a))​ ​(​w​​ +​( p) − ​ U(x) − U(a)  __________  
U(b) − U(a) ​​(​w​​ −​(1 − p) + ​w​​ +​( p))​)​ 

 	  =  ​​ p​(U(b) − U(a))​ 
 
 


​​ 

>0

​ 
 
  ​ ​

(
​ ​w​​ +​( p) _____ p  ​ − ​ 

​ U(x) − U(a)  _________ x − a  ​
 ________ 

​ U(b) − U(a)  _________ 
b − a  ​

 ​​(​w​​ −​(1 − p) + ​w​​ +​( p))​
)

​  ​.

Similarly to before, it can be shown that the agent prefers lottery ​L( p, ​b​ n​​, ​a​ n​​)​ over 
​x​ for large enough ​n​ if

(A5)	 ​0  <  ​ ​w​​ +​( p) _____ p  ​ − ​  λ _________  
1 − p + pλ ​​(​w​​ −​(1 − p) + ​w​​ +​( p))​, ​

which is the analogue to what inequality (A2) is for case 1 of the proof. We conclude 
the proof by verifying

(A6)	 ​​w​​ +​( p)  >  λp  ​ 
​w​​ −​(1 − p) ________ 

1 − p  ​, ​

which is equivalent to inequality (A5). The first (second) inequality below follows 
from condition 1 (condition 2) of Assumption 2.

	 ​​w​​ +​( p)  >  ​  λp
 _________  

1 − p + pλ ​  =  ​  λp
 _____ 

1 − p ​ ⋅ ​  1 − p
 _________  

1 − p + λp
 ​  >  ​  λp

 _____ 
1 − p ​ ​w​​ −​(1 − p),​

which is inequality (A6). ​∎​

B. Proof of Theorem 2

Suppose the agent arrives at wealth ​x​ at time ​t,​ i.e., ​​X​ t​​  =  ​ _ x ​ .​ She continues gam-
bling if there exists a gambling strategy ​τ​ such that ​CPT(​X​ τ​​ , ​​ t​​)  >  U(​ _ x ​)​ where

        ​CPT(​X​ τ​​ , ​​ t​​) = ​∫ 
​ℝ​+​​

​ ​​​w​​ +​(ℙ(u(​X​ τ​​ − r) > y | ​​ t​​)) dy 

	 − ​∫ 
​ℝ​−​​

​ ​​​w​​ −​(ℙ(u(​X​ τ​​ − r)  <  y | ​​ t​​)) dy .​

We consider strategies ​​τ​ a, b​​​ with two absorbing endpoints ​a  <  ​ _ x ​  <  b​ which stop if 
the process ​X​ leaves the interval ​(a, b),​ i.e.,

	 ​​τ​ a, b​​  =  ​inf​ 
 
​ 

 
 ​{s  ≥  t : ​X​ s​​  ∉  (a, b)} .​



www.manaraa.com

1631Ebert and Strack: On Prospect Theory in a Dynamic ContextVOL. 105 NO. 4

Denote with ​p  =  ℙ(​X​ ​τ​ a, b​​​​  =  b)​ the probability that with strategy ​​τ​ a, b​​​ the agent will 
stop at ​b.​ Note that strategy ​​τ​ a, b​​​ results in a binary lottery for the agent.

We first prove that the agent never stops if ​X​ is a martingale. For every stop-
ping time ​​τ​ a, b​​​ consider the sequence of bounded stopping times ​min {​τ​ a, b​​, n}​ for 
​n  ∈  ℕ​. By Doob’s optional sampling theorem (Revuz and Yor 1999, p. 70), 
​E(​X​ min{​τ​ a, b​​, n}​​)  =  ​X​ t​​  =  ​ _ x ​ .​ By the theorem of dominated convergence it follows that

	 ​E(​X​ ​τ​ a, b​​​​)  =  E​(​ lim​ 
n→∞​ 

 
  ​ ​X​ min{​τ​ a, b​​, n}​​)​  =  ​ lim​ 

n→∞​ 
 
  ​ E​(​X​ min{​τ​ a, b​​, n}​​)​  =  ​ _ x ​ . ​ 

Hence, ​​X  ​​τ​ a, b​​​​​ implements the binary lottery ​L( p, a, b)​ with expectation ​​ 
_

 x ​.​ From 
Theorem 1 it follows that there exist ​a  <  b​ such that the agent prefers the binary 
lottery ​L( p, a, b)​ induced by the strategy ​​τ​ a, b​​​ over the certain outcome ​​ 

_
 x ​​ .

In the last step we prove that the naïve agent never stops even if ​X​ is not a martin-
gale. Define the strictly increasing scale function ​S : ℝ  →  ℝ​ by

	 ​S(x)  =  ​∫ 
0
​ 
x

​​ exp ​(−​∫ 
0
​ 
y
​​ ​ 2μ(z) ____ 
​σ​​ 2​(z)

 ​ dz)​ dy .​

Define a new process ​​​X ̂ ​​t​​  =  S(​X​ t​​)​ and a new value function ​​U ˆ ​(​x ̂ ​) = (U ◦ ​S​​ −1​)(​x ̂ ​)​.  
Note that the index ​λ​ from Assumption 1 of the original value function ​U​ equals that 
of ​​U ˆ ​​ as for all ​​x ̂ ​  =  S(x)​

	 ​​ 
​∂​ −​​​U ̂ ​(​x ̂ ​) ______ 
​∂​ +​​​U ̂ ​(​x ̂ ​)

 ​  =  ​ 
​ ​∂​ −​​U(x) ______ 
​S ′ ​(x)

  ​
 _____ 

​ ​∂​ +​​U(x) ______ 
​S ′ ​(x)

  ​
 ​  =  ​ ​∂​ −​​U(x) ______ ​∂​ +​​U(x) ​ .​

The process ​​X ̂ ​​ satisfies (Revuz and Yor 1999, p. 303 ff)

	 ​ℙ​(​​X ̂ ​​​τ​ a, b​​​​  =  S(b))​  =  ​ S(​ _ x ​) − S(a)  _________  
S(b) − S(a) ​  =  ℙ​(​X​ ​τ​ a, b​​​​  =  b)​  =  p .​

Therefore, a CPT agent with the value function ​​U ̂ ​​ facing the process ​​X ̂ ​​ evaluates all 
stopping times exactly as a CPT agent with value function ​U​ who faces ​X​ and the 
proof follows from the martingale case. ​∎​

C. Proof of Proposition 1

Consider a wealth level ​​x ̂ ​​ where ​u​ is of exponential growth, i.e., is not more 
concave than all exponential functions. Formally, there exist ​β  ∈  ℝ, α  ∈  ​ℝ​+​​​ such 
that ​[u(x) − β]  ≤  [u(​x ̂ ​) − β] exp (α(x − ​x ̂ ​))​ for all ​x​ . Since EUT preferences are 
invariant under quasilinear transformations, without loss of generality ​β  =  0 .​ We 
will show that at ​​x ̂ ​​ the EUT maximizer will stop all Brownian motions with negative 

drift ( ​μ  <  0​ ) and small enough variance ​​(σ  <  ​√ 
___

 ​|​ 2μ __ α ​|​ ​)​​.
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Consider the Brownian motion ​X​ with ​​X​ t​​  =  ​x ̂ ​ + μt + σ​W​ t​​​ starting in ​​X​ 0​​  =  ​x ̂ ​​ 

with negative drift ​μ  <  0​ and variance ​σ  <  ​√ 
___

 ​|​ 2μ __ α ​|​ ​​ . For every stopping time ​τ​ such 
that ​ρ(τ  >  0)  >  0​

​E​[u(​X​ τ​​)]​  ≤  u(​x ̂ ​)E​[exp (α(​X​ τ​​ − ​x ̂ ​))]​  =  u(​X​ 0​​)E​[exp (αμτ + ασ​W​ τ​​)]​

	 = u(​X​ 0​​)E​[1 + ​∫ 
0
​ 
τ
​​​(αμ + ​ 1 _ 

2
 ​ ​α​​ 2​ ​σ​​ 2​)​ exp (αμs + ασ​W​ s​​) ds

 	 + ​∫ 
0
​ 
τ
​​ ασ exp (αμs + ασ​W​ s​​) d​W​ s​​]​

 	  =  u(​X​ 0​​)E​[1 + ​∫ 
0
​ 
τ
​​​(αμ + ​ 1 _ 

2
 ​ ​α​​ 2​ ​σ​​ 2​)​ exp (αμs + ασ​W​ s​​) ds]​  <  u(​X​ 0​​) ​.

The second equality follows from It​​o ˆ ​​’s Lemma. The last equality follows from 
Doob’s optional sampling theorem. Hence, the expected utility from stopping ​X​ 
immediately at ​​x ̂ ​​ is strictly higher than the expected utility from any other stopping 
strategy. ​∎​
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